Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virol J ; 20(1): 206, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679757

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by the Dabie bandavirus, [or SFTS virus (SFTSV)] that has become increasingly widespread since it was first reported in 2009. The SFTSV comprises three essential single-stranded RNA gene segments, with the S segment encoding the nucleocapsid (N) protein. Since the N protein is the most abundant and stable viral protein, it is a useful diagnostic marker of infection. Various SFTSV N-protein-based detection methods have been developed. However, given the limited research on antibodies of an SFTSV N-protein, here we report the characterization of the antibodies against SFTSV N protein especially their mapping results which is essential for more efficient and optimized detection of SFTSV. METHODS: To generate SFTSV-N-protein-specific monoclonal antibodies, recombinant full-length SFTSV N protein was expressed in E. coli, and the purified N protein was immunized to mice. The binding epitope positions of the antibodies generated were identified through binding-domain mapping. An antibody pair test using a lateral flow immunoassay (LFIA) was performed to identify effective diagnostic combinations of paired antibodies. RESULTS: Nine monoclonal antibodies specific for the SFTSV N protein were generated. Antibodies #3(B4E2) and #5(B4D9) were specific for sequential epitopes, while the remainder were specific for conformational epitopes. Antibody #4(C2G1) showed the highest affinity for the SFTSV N protein. The binding domain mapping results indicated the binding regions of the antibodies were divided into three groups. The antibody pair test demonstrated that #3(B4E2)/#4(C2G1) and #4(C2G1)/#5(B4D9) were effective antibody pairs for SFTSV diagnosis. CONCLUSIONS: Effective virus detection requires at least two strong antibodies recognizing separate epitope binding sites of the virus antigen. Here, we generated SFTSV-N-protein-specific monoclonal antibodies and subsequently performed epitope mapping and an antibody pair test to enhance the diagnostic efficiency and accuracy of SFTSV. Confirmation of epitope mappings and their combination immune response to the N protein provide valuable information for effective detection of SFTSV as well as can respond actively to detect a variant SFTSV.


Assuntos
Formação de Anticorpos , Trombocitopenia , Animais , Camundongos , Nucleoproteínas/genética , Escherichia coli , Febre , Anticorpos Monoclonais , Epitopos
2.
Plant Cell Environ ; 45(4): 1049-1064, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098547

RESUMO

Chemical pesticides are still frequently overused to diminish such crop loss caused by biotic stress despite the threat to humans and the environment. Thus, it is urgent to find safer and more effective defense strategies. In this study, we report that caffeine, implanted through a transgenic approach, enhances resistance against variable biotic stresses in rice without fitness cost. Caffeine-producing rice (CPR) was generated by introducing three N-methyltransferase genes involved in the biosynthesis of caffeine in coffee plants. The CPR plants have no differences in morphology and growth compared to their wild-type counterparts, but they show strongly enhanced resistance to both bacterial leaf blight, rice blast, and attack of white-backed planthoppers. Caffeine acts as a repellent agent against rice pathogens. Moreover, caffeine triggers a series of Ca2+ signalling-like processes to synthesize salicylic acid (SA), a hormone associated with plant resistance. In CPR, phosphodiesterase was inhibited by caffeine, cAMP and cGMP increased, intracellular Ca2+ increased, phenylalanine lyase (PAL) was activated by OsCPK1, and SA synthesis was activated. This finding is a novel strategy to improve resistance against the biotic stresses of crops with a special type of defense inducer.


Assuntos
Cafeína , Oryza , Cafeína/farmacologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/farmacologia , Estresse Fisiológico/genética
3.
Plants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685873

RESUMO

Chalcone isomerase (CHI) is a key enzyme in flavonoid biosynthesis. In plants, CHIs occur in multigene families, and they are divided into four types, types I-IV. Type I and II CHIs are bona fide CHIs with CHI activity, and type III and IV CHIs are non-catalytic members with different functions. Rice contains seven CHI family genes (OsCHIs). Molecular analysis suggested that OsCHI3 is a type I CHI, and the other OsCHIs were classified into types III and IV. To elucidate their biochemical functions, OsCHI1, OsCHI3, OsCHI6, and OsCHI7 were expressed in Escherichia coli, and the recombinant OsCHI proteins were purified. An activity assay of recombinant OsCHIs showed that OsCHI3 catalyzed the isomerization of naringenin chalcone and isoliquiritigenin, whereas the other recombinant OsCHIs had no CHI activity. OsCHI3 also exhibited a strong preference to naringenin chalcone compared to isoliquiritigenin, which agrees well with the catalytic properties of type I CHIs. These results ascertain OsCHI3 to be a bona fide CHI in rice. OsCHI3 and the other OsCHIs were expressed constitutively throughout the rice growth period and different tissues. OsCHI3 expression was induced immediately in response to ultra-violet (UV) stress, suggesting its involvement in the biosynthesis of sakuranetin, a flavonoid phytoalexin in rice.

4.
Pathogens ; 9(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212951

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo), a causal agent of bacterial leaf blight of rice, possesses two-component regulatory systems (TCSs) as an intracellular signaling pathway. In this study, we observed changes in virulence, biofilm formation, motility, chemotaxis, and tolerance against oxidative stress of a knockout mutant strain for the PXO_RS20535 gene, encoding an orphan response regulator (RR). The mutant strain lost virulence, produced significantly less biofilm, and showed remarkably reduced motility in swimming, swarming, and twitching. Furthermore, the mutant strain lost glucose-guided movement and showed clear diminution of growth and survival in the presence of H2O2. These results indicate that the RR protein encoded in the PXO_RS20535 gene (or a TCS mediated by the protein) is closely involved in regulation of biofilm formation, all types of motility, chemotaxis, and tolerance against reactive oxygen species (ROS) in Xoo. Moreover we found that the expression of most genes required for a type six secretion system (T6SS) was decreased in the mutant, suggesting that lack of the RR gene most likely leads to defect of T6SS in Xoo.

5.
Molecules ; 25(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998370

RESUMO

Methylation is a common structural modification that can alter and improve the biological activities of natural compounds. O-Methyltransferases (OMTs) catalyze the methylation of a wide array of secondary metabolites, including flavonoids, and are potentially useful tools for the biotechnological production of valuable natural products. An OMT gene (PfOMT3) was isolated from perilla leaves as a putative flavonoid OMT (FOMT). Phylogenetic analysis and sequence comparisons showed that PfOMT3 is a class II OMT. Recombinant PfOMT3 catalyzed the methylation of flavonoid substrates, whereas no methylated product was detected in PfOMT3 reactions with phenylpropanoid substrates. Structural analyses of the methylation products revealed that PfOMT3 regiospecifically transfers a methyl group to the 7-OH of flavonoids. These results indicate that PfOMT3 is an FOMT that catalyzes the 7-O-methylation of flavonoids. PfOMT3 methylated diverse flavonoids regardless of their backbone structure. Chrysin, naringenin and apigenin were found to be the preferred substrates of PfOMT3. Recombinant PfOMT3 showed moderate OMT activity toward eriodictyol, luteolin and kaempferol. To assess the biotechnological potential of PfOMT3, the biotransformation of flavonoids was performed using PfOMT3-transformed Escherichia coli. Naringenin and kaempferol were successfully bioconverted to the 7-methylated products sakuranetin and rhamnocitrin, respectively, by E. coli harboring PfOMT3.


Assuntos
Flavonas/biossíntese , Metiltransferases/metabolismo , Perilla/enzimologia , Folhas de Planta/enzimologia , Sequência de Aminoácidos , Biotecnologia , Cromatografia Líquida de Alta Pressão , Flavonas/química , Cinética , Metiltransferases/química , Metiltransferases/isolamento & purificação , Filogenia , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
6.
J Nanosci Nanotechnol ; 20(11): 6920-6924, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604537

RESUMO

In this study, a low-thermal-budget microwave irradiation (MWI) technique was applied as a post-deposition annealing (PDA) process to lower the trap densities that exist in transparent amorphous oxide semiconductor thin film transistors (TAOS TFTs). As channel layers of TAOS TFTs, two types of indium gallium zinc oxide (IGZO) with different compositions as well as aluminum zinc tin oxide (AZTO) and zinc oxide (ZnO) thin films were deposited with various thicknesses through radio frequency (RF) magnetron sputtering at 25°C. Cost-effective and energy-efficient MWI was conducted to enhance the electrical performance of transistors by removing traps and defects. The electrical characteristics of IGZO (1:1:1 and 4:2:3)-, ZnO-, and AZTO-based TFTs treated by MWI were evaluated by measuring the transfer curves. In particular, the relation between the interface trap density (Dit) and bulk trap density (Nt) of microwave-irradiated TFTs was quantitatively evaluated by the subthreshold swing (SS) variation based on channel thickness. The results indicated that of the four types of channel layers, the performance of IGZO (4:2:3) TFTs was the best and that of AZTO TFTs was the worst, in terms of electrical properties such as on/off current ratio, mobility SS, and trap density. In particular, it was demonstrated that the trap density of MWI-treated TAOS TFTs was much lower than that of conventional furnace annealing (CFA)-treated devices. Despite the short annealing duration of a few minutes, the MWI more effectively reduced the trap sites than did the furnace treatment, and significantly enhanced the electrical properties of the TAOS TFTs. It is expected that high-performance TAOS TFTs can be fabricated by applying MWI, which is a highly efficient and low-thermal-budget annealing method, to the PDA process and can thus reduce trap density.

7.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471084

RESUMO

: Chalcone synthase (CHS) is a key enzyme in the flavonoid pathway, participating in the production of phenolic phytoalexins. The rice genome contains 31 CHS family genes (OsCHSs). The molecular characterization of OsCHSs suggests that OsCHS8 and OsCHS24 belong in the bona fide CHSs, while the other members are categorized in the non-CHS group of type III polyketide synthases (PKSs). Biochemical analyses of recombinant OsCHSs also showed that OsCHS24 and OsCHS8 catalyze the formation of naringenin chalcone from p-coumaroyl-CoA and malonyl-CoA, while the other OsCHSs had no detectable CHS activity. OsCHS24 is kinetically more efficient than OsCHS8. Of the OsCHSs, OsCHS24 also showed the highest expression levels in different tissues and developmental stages, suggesting that it is the major CHS isoform in rice. In oschs24 mutant leaves, sakuranetin content decreased to 64.6% and 80.2% of those in wild-type leaves at 2 and 4 days after UV irradiation, respectively, even though OsCHS24 expression was mostly suppressed. Instead, the OsCHS8 expression was markedly increased in the oschs24 mutant under UV stress conditions compared to that in the wild-type, which likely supports the UV-induced production of sakuranetin in oschs24. These results suggest that OsCHS24 acts as the main CHS isozyme and OsCHS8 redundantly contributes to the UV-induced production of sakuranetin in rice leaves.


Assuntos
Aciltransferases/metabolismo , Flavonoides/biossíntese , Oryza/enzimologia , Oryza/efeitos da radiação , Raios Ultravioleta , Aciltransferases/química , Aciltransferases/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Isoenzimas/metabolismo , Cinética , Família Multigênica , Mutação/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo
8.
Theriogenology ; 147: 39-49, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32086050

RESUMO

Progesterone is a steroid hormone well known for its significant role in the reproduction process of mammals. Numerous studies have reported on the regulation of progesterone during implantation, pregnancy and parturition, but there are fewer studies on progesterone in relation to the early stages of embryo development. In the present study, we investigated the effects of progesterone during the development of in vitro produced porcine embryos. First, gene expression of various progesterone receptors in the in vitro produced porcine embryos were analyzed. PGRMC1 and PGRMC2 (progesterone receptor membrane component 1 and 2) showed distinct expression. Next, the embryos were treated with two concentrations of progesterone (10 nM and 100 nM) for two different durations (from day 0 and from day 4) to compare the developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts. The experimental groups in both durations showed similarly increased blastocyst cell numbers and decreased apoptosis rates when treated with 100 nM progesterone. Furthermore, the expression levels of PGRMC1, PGRMC2, PAIRBP1 (plasminogen activator inhibitor RNA-binding protein 1), and apoptosis-related genes were examined in blastocysts and showed significant increases in the 100 nM treatment group compared to the control group. Subsequently, the embryos were treated with the PGRMC1 inhibitor, AG-205, and developmental rates, cell numbers, and apoptosis rates of day 7 blastocysts were compared. In addition, 100 nM progesterone was treated simultaneously with AG-205 to test if the inhibition effect is relieved by progesterone. Groups treated with 1 µM and 2 µM AG-205 showed decreased cell numbers and increased apoptosis rates in day 7 blastocysts compared to the control group. We also confirmed the recovery of inhibition by 100 nM progesterone. In conclusion, the present study indicated that progesterone positively affects the development of in vitro produced preimplantation porcine embryos by increasing cell proliferation and decreasing apoptosis via PGRMC1-involved actions. However, the detailed mechanisms of PGRMC1 need further elucidation.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Fertilização in vitro/veterinária , Proteínas de Membrana/metabolismo , Progesterona/farmacologia , Receptores de Progesterona/metabolismo , Suínos/embriologia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Proteínas de Membrana/genética , Oócitos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Progesterona/genética
9.
Plant Pathol J ; 35(1): 84-89, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828283

RESUMO

Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.

10.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332817

RESUMO

Cinnamyl alcohol dehydrogenase (CAD) is involved in the final step of the phenylpropanod pathway, catalyzing the NADPH-dependent reduction of hydroxy-cinnamaldehydes into the corresponding alcohols. The rice genome contains twelve CAD and CAD-like genes, collectively called OsCADs. To elucidate the biochemical function of the OsCADs, OsCAD1, 2, 6, and 7, which are highly expressed in rice, were cloned from rice tissues. The cloned OsCADs were heterologously expressed in Escherichia coli as His-tag fusion proteins. The activity assay of the recombinant OsCADs showed that OsCAD2, 6, and 7 have CAD activity toward hydroxycinnamaldehydes, but OsCAD1 has no detectable catalytic activity. The kinetic parameters of the enzyme reactions demonstrated that OsCAD2 has the highest catalytic activity among the examined enzymes. This result agrees well with the finding that the Zn binding and NADPH binding motifs and the residues constituting the substrate binding pocket in bona fide plant CADs were fully conserved in OsCAD2. Although they have large variations in the residue for the substrate binding pocket, OsCAD6 and 7 catalyzed the reduction of hydroxycinnamaldehydes with a similar efficiency. Alignment of amino acid sequences showed that OsCAD1 lacks the GxxxxP motif for NADPH binding and has mismatches in residues important in the reduction process, which could be responsible for the loss of catalytic activity. OsCAD2 belongs to CAD Class I with bona fide CADs from other plant species and is constitutively expressed throughout the developmental stages of rice, with preferential expression in actively lignifying tissues such as the root, stem, and panicle, suggesting that it is mainly involved in developmental lignification in rice. The expression of OsCAD2 was also induced by biotic and abiotic stresses such as Xanthomonas oryzae pv. oryzae (Xoo) infection and UV-irradiation, suggesting that it plays a role in the defense response of rice, in addition to a bona fide role in developmental lignification. OsCAD6 and 7 belong in CAD Class II. Their expression is relatively lower than that of OsCAD2 and is confined to certain tissues, such as the leaf sheath, stem, and panicle. The expression of OsCAD6 was stimulated by Xoo infection and UV-irradiation. Thus OsCAD6 appears to be an inducible OsCAD that is likely involved in the defense response of rice against biotic and abiotic stresses.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Família Multigênica , Oryza/enzimologia , Sítios de Ligação , Domínio Catalítico , Cinamatos/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , NADP/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Distribuição Tecidual , Zinco/metabolismo
11.
Front Plant Sci ; 9: 577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868050

RESUMO

Many scientific findings have been reported on the beneficial function of reactive oxygen species (ROS) in various cellular processes, showing that they are not just toxic byproducts. The double-edged role of ROS shows the importance of the regulation of ROS level. We report a gene, rrsRLK (required for ROS-scavenging receptor-like kinase), that encodes a cytoplasmic RLK belonging to the non-RD kinase family. The gene was identified by screening rice RLK mutant lines infected with Xanthomonas oryzae pv. oryzae (Xoo), an agent of bacterial leaf blight of rice. The mutant (ΔrrsRLK) lacking the Os01g02290 gene was strongly resistant to many Xoo strains, but not to the fungal pathogen Magnaporthe grisea. ΔrrsRLK showed significantly higher expression of OsPR1a, OsPR1b, OsLOX, RBBTI4, and jasmonic acid-related genes than wild type. We showed that rrsRLK protein interacts with OsVOZ1 (vascular one zinc-finger 1) and OsPEX11 (peroxisomal biogenesis factor 11). In the further experiments, abnormal biogenesis of peroxisomes, hydrogen peroxide (H2O2) accumulation, and reduction of activity of ROS-scavenging enzymes were investigated in ΔrrsRLK. These results suggest that the enhanced resistance in ΔrrsRLK is due to H2O2 accumulation caused by irregular ROS-scavenging mechanism, and rrsRLK is most likely a key regulator required for ROS homeostasis in rice.

12.
J Nat Prod ; 80(5): 1467-1474, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28429944

RESUMO

Although they are less abundant in nature, methoxyflavonoids have distinct physicochemical and pharmacological properties compared to common nonmethylated flavonoids. Thus, enzymatic conversion and biotransformation using genetically engineered microorganisms of flavonoids have been attempted for the efficient production of methoxyflavonoids. Because of their regiospecificity, more than two flavonoid O-methyltransferases (FOMTs) and enzyme reactions are required to biosynthesize di(or poly)-methoxyflavonoids. For the one-step biotechnological production of bioactive di-O-methylflavonoids, we generated a multifunctional FOMT fusing a 3'-OMT (SlOMT3) and a 7-OMT (OsNOMT). The SlOMT3/OsNOMT fusion enzyme possessed both 3'- and 7-OMT activities to diverse flavonoid substrates, which were comparable to those of individual SlOMT3 and OsNOMT. The SlOMT3/OsNOMT enzyme also showed 3'- and 7-OMT activity for 7- or 3'-O-methylflavonoids, respectively, suggesting that the fusion enzyme can sequentially methylate flavonoids into di-O-methylflavonoids. The biotransformation of the flavonoids quercetin, luteolin, eriodictyol, and taxifolin using SlOMT3/OsNOMT-transformed Escherichia coli generated corresponding di-O-methylflavonoids, rhamnazin, velutin, 3',7-di-O-methyleriodictyol, and 3',7-di-O-methyltaxifolin, respectively. These results indicate that dimethoxyflavonoids may be efficiently produced from nonmethylated flavonoid precursors through a one-step biotransformation using the engineered E. coli harboring the SlOMT3/OsNOMT fusion gene.


Assuntos
Escherichia coli/genética , Flavanonas/química , Flavonoides/metabolismo , Luteolina/química , Metiltransferases/metabolismo , Quercetina/análogos & derivados , Escherichia coli/química , Flavanonas/metabolismo , Flavonoides/química , Flavonoides/isolamento & purificação , Luteolina/metabolismo , Metilação , Metiltransferases/química , Estrutura Molecular , Quercetina/química , Quercetina/metabolismo
13.
Front Plant Sci ; 8: 2099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312373

RESUMO

Cinnamoyl-CoA reductase (CCR) is the first committed enzyme in the monolignol pathway for lignin biosynthesis and catalyzes the conversion of hydroxycinnamoyl-CoAs into hydroxycinnamaldehydes. In the rice genome, 33 genes are annotated as CCR and CCR-like genes, collectively called OsCCRs. To elucidate the functions of OsCCRs, their phylogenetic relationships, expression patterns at the transcription levels and biochemical characteristics were thoroughly analyzed. Of the 33 OsCCRs, 24 of them encoded polypeptides of lengths similar to those of previously identified plant CCRs. The other nine OsCCRs had much shorter peptide lengths. Phylogenetic tree and sequence similarities suggested OsCCR4, 5, 17, 18, 19, 20, and 21 as likely candidates for functional CCRs in rice. To elucidate biochemical functions, OsCCR1, 5, 17, 19, 20, 21, and 26 were heterologously expressed in Escherichia coli and the resulting recombinant OsCCRs were purified to apparent homogeneity. Activity assays of the recombinant OsCCRs with hydroxycinnamoyl-CoAs revealed that OsCCR17, 19, 20, and 21 were biochemically active CCRs, in which the NAD(P)-binding and NADP-specificity motifs as well as the CCR signature motif were fully conserved. The kinetic parameters of enzyme reactions revealed that feruloyl-CoA, a precursor for the guaiacyl (G)-unit of lignin, is the most preferred substrate of OsCCR20 and 21. This result is consistent with a high content (about 70%) of G-units in rice lignins. Phylogenetic analysis revealed that OsCCR19 and 20 were grouped with other plant CCRs involved in developmental lignification, whereas OsCCR17 and 21 were closely related to stress-responsible CCRs identified from other plant species. In agreement with the phylogenetic analysis, expression analysis demonstrated that OsCCR20 was constitutively expressed throughout the developmental stages of rice, showing particularly high expression levels in actively lignifying tissues, such as roots and stems. These results suggest that OsCCR20 is primarily involved in developmental deposition of lignins in secondary cell walls. As expected, the expressions of OsCCR17 and 21 were induced in response to biotic and abiotic stresses, such as Magnaporthe grisea and Xanthomonas oryzae pv. oryzae (Xoo) infections, UV-irradiation and high salinity, suggesting that these genes play a role in defense-related processes in rice.

14.
Int J Mol Sci ; 17(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598131

RESUMO

Solar ultraviolet (UV) radiation is a main extrinsic factor for skin aging. Chronic exposure of the skin to UV radiation causes the induction of matrix metalloproteinases (MMPs), such as MMP-1, and consequently results in alterations of the extracellular matrix (ECM) and skin photoaging. Flavonoids are considered as potent anti-photoaging agents due to their UV-absorbing and antioxidant properties and inhibitory activity against UV-mediated MMP induction. To identify anti-photoaging agents, in the present study we examined the preventative effect of methoxyflavonoids, such as sakuranetin, isosakuranetin, homoeriodictyol, genkwanin, chrysoeriol and syringetin, on UV-B-induced skin photo-damage. Of the examined methoxyflavonoids, pretreatment with isosakuranetin strongly suppressed the UV-B-mediated induction of MMP-1 in human keratinocytes in a concentration-dependent manner. Isosakuranetin inhibited UV-B-induced phosphorylation of mitogen-activated protein kinase (MAPK) signaling components, ERK1/2, JNK1/2 and p38 proteins. This result suggests that the ERK1/2 kinase pathways likely contribute to the inhibitory effects of isosakuranetin on UV-induced MMP-1 production in human keratinocytes. Isosakuranetin also prevented UV-B-induced degradation of type-1 collagen in human dermal fibroblast cells. Taken together, our findings suggest that isosakuranetin has the potential for development as a protective agent for skin photoaging through the inhibition of UV-induced MMP-1 production and collagen degradation.


Assuntos
Colágeno/metabolismo , Flavonoides/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Preparações Clareadoras de Pele/farmacologia , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Metaloproteinase 1 da Matriz/genética , Proteólise , Envelhecimento da Pele/efeitos da radiação
15.
J Biochem ; 160(4): 243-249, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27143545

RESUMO

Light signals recognized by phytochromes are transduced through interactions between down-stream signaling components. Phytochrome-interacting ankyrin repeat protein 2 (PIA2) was found to interact with phytochrome interacting factor 3 (PIF3), a well-known repressor of plant photomorphogenesis in response to phytochrome-mediated light signalling. Both PIA2 and PIF3 are known to be positive regulators of anthocyanin accumulation in Arabidopsis seedlings under far-red conditions. Thus, we investigated the functional relationship between PIA2 and PIF3 in light signalling. We found that PIA2 suppressed PIF3 phosphorylation by phyA. To elucidate how PIA2 modulates phyA-mediated PIF3 phosphorylation, we generated non-phosphorylation mutants and N-terminal α-helix breaking mutants of PIA2. PIF3 phosphorylation by phyA was not suppressed by α-helix breaking PIA2 mutants. The α-helix breaking mutations also resulted in remarkably decreased interactions between PIA2 and PIF3. However, the non-phosphorylation mutants exhibited no effect on phyA-mediated PIF3 phosphorylation. In addition, decreased anthocyanin accumulation in pia2 knockout plant seedlings was not rescued by overexpression of the α-helix breaking mutant in transgenic plants under far-red conditions. These results suggest that PIA2 modulates phyA-mediated PIF3 phosphorylation by physical interaction with PIF3 and that the secondary structure of the PIA2 N-terminus is important in this modulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo A/metabolismo , Transdução de Sinais/fisiologia , Repetição de Anquirina , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fosforilação/fisiologia , Fitocromo A/genética
16.
Mol Cells ; 39(6): 460-7, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27137090

RESUMO

Bacteriophytochromes are phytochrome-like light-sensing photoreceptors that use biliverdin as a chromophore. To study the biochemical properties of the Deinococcus radiodurans bacteriophytochrome (DrBphP) protein, two anti-DrBphP mouse monoclonal antibodies (2B8 and 3H7) were generated. Their specific epitopes were identified in our previous report. We present here fine epitope mapping of these two antibodies by using truncation and substitution of original epitope sequences in order to identify minimized epitope peptides. The previously reported original epitope sequences for 2B8 and 3H7 were truncated from both sides. Our analysis showed that the minimal peptide sequence lengths for 2B8 and 3H7 antibodies were nine amino acids (RDPLPFFPP) and six amino acids (PGEIEE), respectively. We further characterized these peptides in order to investigate their reactivity after single deletion and single substitution of the original peptides. We found that single-substituted 2B8 epitope (RDPLPAFPP) and dual-substituted 3H7 epitope (PGEIAD) showed significantly increased reactivity. These two antibodies with high reactivity for the short modified peptide sequences are valueble for developing new peptide tags for protein research.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas de Bactérias/imunologia , Deinococcus/metabolismo , Epitopos/genética , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Deinococcus/genética , Deinococcus/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Camundongos
17.
J Exp Bot ; 67(8): 2425-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26912801

RESUMO

The formation of body axes is the basis of morphogenesis during plant embryogenesis. We identified embryo-lethal mutants of rice (Oryza sativa) in which T-DNAs were inserted in OsMPK6 Embryonic organs were absent because their development was arrested at the globular stage. Similar to observations made with gle4, shootless, and organless, the osmpk6 mutations affected the initial step of cell differentiation. Expression of an apical-basal axis marker gene, OSH1, was reduced in the mutant embryos while that of the radial axes marker genes OsSCR and OsPNH1 was not detected. The signal for ROC1, a protodermal cell marker, was weak at the globular stage and gradually disappeared. Transcript levels of auxin and gibberellin biosynthesis genes were diminished in osmpk6 embryos. In addition, phytoalexin biosynthesis genes were down-regulated in osmpk6 and a major diterpene phytoalexin, momilactone A, did not accumulate in the mutant embryos. These results indicate that OsMPK6 begins to play a critical role during early embryogenesis, especially when the L1 radial axis is being formed.


Assuntos
Diferenciação Celular , Oryza/citologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Diferenciação Celular/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , DNA Bacteriano/genética , Diterpenos/farmacologia , Endosperma/efeitos dos fármacos , Endosperma/genética , Endosperma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mutagênese Insercional/genética , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/embriologia , Fenótipo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Fitoalexinas
18.
J Biochem ; 159(2): 161-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26314334

RESUMO

Phytochrome A (phyA) is a light labile phytochrome that mediates plant development under red/far-red light condition. Degradation of phyA is initiated by red light-induced phyA-ubiquitin conjugation through the 26S proteasome pathway. The N-terminal of phyA is known to be important in phyA degradation. To determine the specific lysine residues in the N-terminal domain of phyA involved in light-induced ubiquitination and protein degradation, we aligned the amino acid sequence of the N-terminal domain of Arabidopsis phyA with those of phyA from other plant species. Based on the alignment results, phytochrome over-expressing Arabidopsis plants were generated. In particular, wild-type and mutant (substitutions of conserved lysines by arginines) phytochromes fused with GFP were expressed in phyA(-)211 Arabidopsis plants. Degradation kinetics of over-expressed phyA proteins revealed that degradation of the K206R phyA mutant protein was delayed. Delayed phyA degradation of the K206R phyA mutant protein resulted in reduction of red-light-induced phyA-ubiquitin conjugation. Furthermore, seedlings expressing the K206R phyA mutant protein showed an enhanced phyA response under far-red light, resulting in inhibition of hypocotyl elongation as well as cotyledon opening. Together, these results suggest that lysine 206 is the main lysine for rapid ubiquitination and protein degradation of Arabidopsis phytochrome A.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lisina/metabolismo , Fitocromo A/metabolismo , Proteólise , Proteínas Ubiquitinadas/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Núcleo Celular/metabolismo , Cotilédone/fisiologia , Hipocótilo/fisiologia , Luz , Lisina/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fitocromo A/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição , Ubiquitinação
19.
Mol Plant Pathol ; 17(4): 601-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26315668

RESUMO

Like other bacteria, Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight disease in rice, possesses intracellular signalling systems, known as two-component regulatory systems (TCSs), which regulate pathogenesis and biological processes. Completion of the genome sequences of three Xoo strains has facilitated the functional study of genes, including those of TCSs, but the biological functions of most Xoo TCSs have not yet been uncovered. To identify TCSs involved in Xoo pathogenesis, we generated knockout strains lacking response regulators (RRs, a cytoplasmic signalling component of the TCS) and examined the virulence of the RR knockout strains. This study presents a knockout strain (detR(-) ) lacking the PXO_04659 gene which shows dramatically reduced virulence relative to the wild-type. Our studies to elucidate detR function in Xoo pathogenesis revealed a reduction in extracellular polysaccharide (EPS), intolerance to reactive oxygen species (ROS) and deregulation of iron homeostasis in the detR(-) strain. Moreover, gene expression of regulatory factors, including other RRs and transcription factors (TFs), was altered in the absence of DetR protein, as determined by reverse transcription-polymerase chain reaction (RT-PCR) and/or real-time quantitative RT-PCR analyses. All evidence leads to the conclusion that DetR is essential for Xoo virulence through the regulation of the Xoo defence system including EPS synthesis, ROS detoxification and iron homeostasis, solely or cooperatively with other regulatory factors.


Assuntos
Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Catalase/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Histidina Quinase/metabolismo , Peróxido de Hidrogênio/farmacologia , Ferro/farmacologia , Mutação/genética , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Polissacarídeos Bacterianos/metabolismo , Sideróforos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xanthomonas/efeitos dos fármacos , Xanthomonas/crescimento & desenvolvimento
20.
Int J Mol Sci ; 16(12): 29120-33, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26690131

RESUMO

Phytoalexins are inducible secondary metabolites possessing antimicrobial activity against phytopathogens. Rice produces a wide array of phytoalexins in response to pathogen attacks and environmental stresses. With few exceptions, most phytoalexins identified in rice are diterpenoid compounds. Until very recently, flavonoid sakuranetin was the only known phenolic phytoalexin in rice. However, recent studies have shown that phenylamides are involved in defense against pathogen attacks in rice. Phenylamides are amine-conjugated phenolic acids that are induced by pathogen infections and abiotic stresses including ultra violet (UV) radiation in rice. Stress-induced phenylamides, such as N-trans-cinnamoyltryptamine, N-p-coumaroylserotonin and N-cinnamoyltyramine, have been reported to possess antimicrobial activities against rice bacterial and fungal pathogens, an indication of their direct inhibitory roles against invading pathogens. This finding suggests that phenylamides act as phytoalexins in rice and belong to phenolic phytoalexins along with sakuranetin. Phenylamides also have been implicated in cell wall reinforcement for disease resistance and allelopathy of rice. Synthesis of phenolic phytoalexins is stimulated by phytopathogen attacks and abiotic challenges including UV radiation. Accumulating evidence has demonstrated that biosynthetic pathways including the shikimate, phenylpropanoid and arylmonoamine pathways are coordinately activated for phenolic phytoalexin synthesis, and related genes are induced by biotic and abiotic stresses in rice.


Assuntos
Oryza/fisiologia , Fenóis/metabolismo , Sesquiterpenos/metabolismo , Vias Biossintéticas , Resistência à Doença , Oryza/química , Fenóis/química , Sesquiterpenos/química , Estresse Fisiológico , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...